
Exercise 6 Silicon Sensors & Readout Electronics WS18/19

6.1 Noise of an RC Low-Pass Filter

We consider a simple RC Low-Pass filter with a resistor R followed by a capacitor C to ground.
Even with no signal at the input, the thermal noise of the resistor itself leads to noise at the
output. This noise is filtered by the Low-Pass so that the total rms noise voltage is finite, despite
the infinite white noise spectral density of R. We want to calculate this rms noise and derive an
equivalent noise bandwidth of the Low-Pass filter. For calculation, perform the following steps:

1. Use a noise voltage source in series with R with the correct spectral density d〈n2〉
dν .

2. For a grounded input of the filter, the resistor creates noise. The circuit is equivalent to a
(noise) voltage source followed by an /em ideal filter. Write down the (complex) transfer
function H(ω) of the Low-pass filter with corner frequency ω. Derive how the amplitude
of the signal is reduced, i.e. v2(ω).

3. Integrate the squared noise voltage at the output over all frequencies. Note that you must
use v2(ω), because we are treating the squared noise voltage. Pay attention to integrate
over frequency ν, not angular frequency ω. The result is the (suquared) rms noise voltage.

4. Do you understand ’physically’ why the result is independent of R?

5. What would be the bandwidth νbrick of an infinitely steep ’brick wall’ low-pass filter to
obtain the same output noise?

6. Compare this to the corner frequency of the low pass filter (do not confuse ω and ν)!

6.2 High Pass Corner Frequency for Lowest Noise (Difficult!)

In the lecture, it was shown how the input referred noise of an amplifier / shaper system can be
computed for a CRN − RCM shaper. The high- and low-pass sections all had the same corner
frequencies.
In this (not so simple) exercise, we treat a shaper with one low-pass section with corner frequency
ωl = 1/τl and with one high-pass section with a different corner frequency ωh = 1/τh. To simplify
expressions, we introduce the ratio between the two frequencies r := ωl/ωh = τh/τl and describe
the system by τh = τ and r. We want to prove that it is the best choice to have both corner
frequencies equal, i.e. to choose r = 1. The solution is eased a lot by using a mathematics
program like Mathematica.

1. Write down the transfer function H(s) of the system.

2. Calculate the step response (time domain), which is the inverse Laplace Transform f(t) =
1

2πi

∫ c+i∞
c−i∞ est 1sH(s)ds, where c is chosen to ensure convergence. This integral can be cal-

culated via the residues at the two poles, i.e. the integral is 2πi×
∑

Residues; the residue
of a function f(x) at a simple pole a is Res(f(x), a) = limx→a(x− a)f(x).

3. What is the peaking time? Show that the peak amplitude is r
r

1−r .

4. Verify that for r → 1 these expressions (step response, peaking time and amplitude) give
the values for a normal CR−RC shaper.
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5. Assume that the (square) noise voltage at the preamplifier output (i.e. at the input of the

shaper) has a spectrum given by
d〈v2pa(ω)〉

dω =
∑0
k=−2 ckω

k. Calculate the rms noise at the
shaper output by integrating over all frequencies (see page 27 of the lecture slides). Note
that the transfer function H(ω) must be squared! Hint: After a substitution x = (ω/ωh)2,
simplify the the integral by expansion into partial fractions. The more complicated of
the two resulting integrals can be simplified by substitution and merged with the simpler
integral. Solve this by using the ’reflection formula’ of the Gamma function.

6. Now divide this result by the (squared) peak amplitude to get the noise referred to a unit
signal. In order to do a fair comparison, we need to make sure the systems keeps its speed
when we change r. Therefore, choose ωl such that the peaking time remains constant. You
must probably use a mathematical program to do this now... You can then try to obtain
the limit for r → 1 to verify that you get the result from the lecture slides.

7. The resulting expression is fairly complex and it is difficult to find the minimum, but you
can verify that the derivative is indeed zero for r = 1 for all k individually.

6.3 Data Loss from Finite Buffer Size

Hits in a single detector channel are generated at a rate (frequency) of fin (1/fin is the average
time between two hits). Each hit is stored in a FIFO memory (First-In, First-Out) of depth N .
The FIFO is emptied at a constant rate of freadout. Hits which occur while the FIFO is full are
lost.

1. Write a short simulation program to find out the fraction of lost hits as a function of fin,
freadout and N .

2. What happens if fin > freadout?

3. How large a FIFO do you need (roughly) to keep the loss for fin = 0.5 × freadout below,
10%, 1% or 0.1%?

4. Assume you can merge all hits of M channels into one FIFO (so that the input rate is
M×fin) which you read out with M -fold speed. How deep must the FIFO be for the same
losses?
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